> Sys.time() [1] "2014-10-21 10:57:40 EEST" > summary(m1, digits = 2, style = "pmax") Call: earth(formula=fmla, data=Dm) ELTYY = 6.6 - 0.17 * pmax(0, 57 - IKATUTK) - 0.26 * pmax(0, IKATUTK - 77) - 0.21 * pmax(0, JOB2 - -0.22) - 0.27 * pmax(0, -0.71 - JOB3) + 0.18 * pmax(0, ACT4 - -1.3) + 0.35 * pmax(0, ACT5 - 0.41) - 0.12 * pmax(0, 0.41 - ACT5) - 0.061 * pmax(0, 8 - SOSVERK) - 0.0012 * pmax(0, SAIPV - 40) + 0.02 * pmax(0, 40 - SAIPV) + 0.16 * pmax(0, LAHTO1 - -0.3) - 0.33 * pmax(0, -0.3 - LAHTO1) + 0.19 * pmax(0, 3.6 - LAHTO2) + 0.00012 * pmax(0, ELAKETUb - 1680) - 0.00062 * pmax(0, 1680 - ELAKETUb) Selected 16 of 30 terms, and 10 of 20 predictors Importance: SAIPV, IKATUTK, SOSVERK, LAHTO1, ACT4, LAHTO2, JOB2, ELAKETUb, ... Number of terms at each degree of interaction: 1 15 (additive model) GCV 1.5 RSS 3516 GRSq 0.2 RSq 0.21 > evimp(m1, trim=FALSE); nsubsets gcv rss SAIPV 15 100.0 100.0 IKATUTK 14 75.4 77.5 SOSVERK 13 64.5 67.5 LAHTO1 12 54.4 58.3 ACT4 11 47.6 52.0 LAHTO2 9 37.0 42.2 JOB2 9 36.6 41.8 ELAKETUb 9 36.6 41.8 ACT5 7 24.4 30.9 JOB3 5 13.1 21.3 MIES-unused 0 0.0 0.0 EDUCI-unused 0 0.0 0.0 TUTKP-unused 0 0.0 0.0 DURURA-unused 0 0.0 0.0 JOB1-unused 0 0.0 0.0 JOB4-unused 0 0.0 0.0 ACT1-unused 0 0.0 0.0 ACT2-unused 0 0.0 0.0 ACT3-unused 0 0.0 0.0 ACT6-unused 0 0.0 0.0 > sink()